
? 

where K ( k )  and E ( k )  are complete e l l ip t i c  integrals of respectively 
f i r s t  and  second k i n d ,  and the modulus k i s  defined by 

k=A-.  ( 37 )  

For convenience a table g i v i n g  the e l l ip t i c  integrals (Table 4 )  i s  
included i n  this  report where the angle cx i s  related t o  k by sina=k. 

are given i n  Table 5. 
is used i n  
( a /b )  = 1 correspond t o  the two limiting cases o f  a single crack of  
length 2b and b-a, respectively. 
for a 4  and b o t h  k , (a )  and k l ( b )  approach the corresponding single 
crack value for (a/b)+l (i .e. ,  for a-). 
i n  F i g .  46 and Table 5, however, i s  t h a t  generally for smaller plate 
thicknesses as a approaches zero the stress intensity factor k l ( a )  
goes t h r o u g h  a m i n i m u m  before becoming unbounded. This reduction i s  
apparently due t o  the interaction of the stress fields of the two cracks 
as the distance 2a decreases. 
be seen t h a t  even though the cleavage stress 022(X1,0) perpendicular 
t o  and on the line of the crack i s  tensile near the crack and becomes 
unbounded a t  the crack t i p ,  i t  becomes compressive i n  a certain interval 
away from the crack. 
the two halves of the plate. 
of the two cracks i t  i s  seen t h a t  the inner crack tips would be in 
compressive region and consequently there would be some decrease in 
the stress intensity factor. 

Further results for col 1 i near cracks under Mode I I 1 oadi n g  cond i t i on  
In these results the half crack length (b-a)/2 

normalizing stress intensity factor. ( a /b )  = 0 and 

As expected k l (a)  becomes unbounded 

An interesting result observed 

For example, from Fig. 47 i t  may clearly 

This i s  largely due t o  the "bending" effect o f  
Thus after the interaction of stress fields 

4.4 Coll inear Cracks Perpendicular t o  the Boundary 

From a viewpoint of interaction between two cracks or between 
cracks and free boundaries another geometry of great deal of practical 
interest i s  that of collinear cracks perpendicular t o  the plate boundary 
described in Fig. 48. A special case o f  this  problem i s  the two surface 

-64- 



4. T a b l e s  o f  Complete Elliptic Integrals 
K ( k )  a n d  E ( k ) ,  k = sins. 
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iaDie 5 .  xress intensity factors in an orthotropic 
strip containing two identical collinear cracks 
loaded by uniform crack surface pressure p 
or shear q; H1=H2=H9 K=I, Hs/(b-a)/2 = 0.4. 
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cracks s imulat i  ng we1 d defects on b o t h  sur faces .  

k ( b )  f o r  two symmetrically located c o l l i n e a r  cracks a r e  g iven  i n  
Table 6. 
For very shallow surface  cracks ( i . e . ,  f o r  a*), as  seen from the 
f igure  k ( a )  approaches the stress i n t e n s i t y  f a c t o r  i n  a semi- inf in i t e  
plane conta ining an edge crack o f  d e p t h  Za,, namely 

Some sample results f o r  the stress i n t e n s i t y  f ac to r s  k (a )  and 

Fig .  49 shows the r e s u l t s  f o r  two ( c o l l i n e a r )  surface  cracks.  

a / h  

k l ( a )  -+ 1.586 50$ . (38) 

b / h  ko 
6 

In the o the r  l im i t i ng  case f o r  w h i c h  a 4 ,  k ( a )  approaches the stress 
i n t e n s i t y  f a c t o r  i n  a symmetrically loaded infinite plane containing 

0 
0 .1  
0 . 2  
0 . 4  

T a b l e  6 .  S t r e s s  i n t e n s i t y  f a c t o r s  
c r a c k s  i n  a s t r i p  ( F i g u r  

0 . 4  (+ 4 
0 . 5  1 . 1 7 4 6  
0 .6  1 . 1 1 0 2  
0 . 8  1 . 0 9 8 4  

0 
0 .1  
0 . 2  
0 . 4  

0 . 4  (+ 4 
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0 . 6  
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! 1 ,  a,, = ( b - a ) . / 2 ) .  
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1 .0961  
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Figure46. Stress intensity factors for two collinear cracks in an 
orthotropic strip. 

-68- 



8 

6 

4 

2 

0 

- 2 

-4 

H/a =0.6 
** t 

-6 
I 2 3 

x,/a 
4 5 6 

Figure 47. The effect  of material orthctropy on the normal s t ress  
O ~ ~ ( X ~ , O )  i n  a s t r ip  containing a pressurized crack (6= 

K=I isotropic s t r ip) .  
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two edge cracks. 
t o  the cracks i s  P, and the length o f  the net ligament i s  2a ,  i t  can be 
shown that the stress s ta te  in the net ligament i s  given by 

In this case, i f  the resultant force perpendicular 

9 u ( X , O )  = 0 . P 
U y y ( X ¶ O )  = 7 r d s . z -  XY 

Thus, by observing t h a t  

P = 2hao = 2aul 

and 

k (a )  = lim J m -  oyy(x,O) , 
X-ta 

we obtain 

2 k ( a )  = ; ul 6 . 

(39) 

These two limiting results are also shown in Fig.  49. 

5. INTERACTION BETWEEN FLAT INCLUSIONS AND CRACKS 

Few unusual results aside, the problem of  interaction between two 
cracks i s  relatively well-understood in the sense t h a t  the resulting 
stress f ie ld or the stress intensity factors would either be amplified 
o r  reduced as the distance between the cracks decreases. Almost in a l l  
cases the qualitative nature o f  the result could be predicted intuitively. 
For example, i f  the cracks are parallel then they would be i n  each 
other’s shadow and there would be a reduction i n  the stress intensity 
factors. 
expect an amplification in the stress intensity factors, The exception 
o r  the unusual result  in this  case i s  the reduction i n  the stress 

On the other hand if the cracks are co-planar then one would 
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F igure  48. I n f i n i t e  s t r i p  w i th  two i n t e r n a l  cracks. 
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Figure 49.  The stress intensity fac tor  for the edge cracks i n  an 
infinite strip (ul = aohla 1. 
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intensity factors a t  the inner crack tips for certain relative crack 
locations i n  plates w i t h  relatively smaller thicknesses. 
problems relating t o  interaction between cracks were discussed i n  the 
previous secti ons . 

Intuitively w h a t  i s  not as well understood i s  the problem of inter- 
action between cracks and f l a t  inclusions. 
singular stresses and consequently are locations for potential fracture 
ini t iat ion.  However, the inclusions are also "stiffeners" and therefore, 
properly oriented, they should tend t o  arrest  crack propagation. For 
this  reason i n  this study i t  i s  found t o  be worthwhile t o  undertake a 
detailed investigation of the problem on w h i c h  the technical l i terature 
seems t o  be extremely weak. Particularly interesting in this  problem 
i s  the behavior of the stress state around the ends o f  the inclusions 

ons and cracks. The 
nteraction problem and 
this  report. 

Some specific 

Separately b o t h  flaws have 

ntersection between inclus 
s of this crack-i ncl usion 
are given in Appendix A of 

and a t  the points of 
details of the analys 
very detai 1 ed results 

6. PLANAR CRACKS OF FINITE SIZE 

Referring t o  Fig. 50 which i s  reproduced from API S tandard  1104 
and which describes a set  of empirical rules regarding the interaction 
between planar cracks i t  may be seen t h a t  somewhat more quantitative 
results are needed. 
described i n  Appendix B of this  report. 
only for a single internal crack. 
will be used for the interaction of coplanar surface cracks, and 
cop1 anar internal cracks 1 ocated para1 le1 o r  i n  series. 

The general method t o  provide such results i s  
The appendix gives the results 

However, the method i s  general and 
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CASE 4 5 

INTERACTION I F  INTERACTION EXISTS 
EXISTS I F :  EFFECTIVE FLAW SIZE IS: 

a, = a2 
s < c1 + c2 

2c, = 2c, - s + 2c, 

5 1  < c1 + c 2  a, = 2a, + s2 + a 2  

and 
a2 s 2 < a l  + -  2 2c, = 2c,  + s, + 2cz 

a, = d + 2a 
d < a  

2c, = 2 c  

s, < c2 + c2 

and 

53 < a l  + az 

- 
2a, = 2a3 

2c, = 2 C l  + s, + ZC, 

F i g .  50. RULES FOR E V A L U A T I O N  OF FLAW INTERACTtON 
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PART I1 

MECHANISMS OF CORROSION FATIGUE IN PIPELINE STEELS 

In this par t ,  the i n i t i a l  results of  studies, designed for develop- 
i n g  mechanistic understanding of corrosion fatigue, a re  described. 
studies provide the scientif ic bases for gu id ing  the development o f  
methodol ogy for assessing safety and d u r a b i  1 i t y  of  p i  pel ines i n  service , 
and for g u i d i n g  the development of improved materials and protection 
systems. 
rule-making . 

These 

The results are not intended for use directly i n  design and 

1 .  INTRODUCTION 

Transmission and d i s t r i b u t i o n  pipelines are exposed t o  a broad 
range of chemical environments, both  i n  terms of  corrosive species t h a t  
are present i n  soils  (such as  carbonates, chlorides and n i t ra tes)  and 
o f  deleterious species t h a t  may be transported w i t h i n  the lines (such 
as  hydrogen and ammonia, and hydrogen sulfide and water/water vapor a s  
impurities i n  na tura l  gas and o i l  1. These environments, acting i n  con- 
cert  w i t h  operating stresses (bo th  s ta t ic  and cyclic stresses) and 
residual stresses, can cause cracks t o  in i t i a te  and grow, and result i n  
subsequent fai 1 ure (leakage o r  rupture). In a d d i t i o n  t o  these external 
environments, hydrogen t h a t  might  be present i n  the steel (introduced 
d u r i n g  fabrication , processing o r  f ield i n s t a l l a t i o n ,  o r  by corrosion 
o r  cathodic charging during service) can also lead t o  cracking. 
tative information and understanding are needed, therefore, t o  assess 
the safety and re l iabi l i ty  of  pipelines d u r i n g  service, and t o  guide i n  
the development of improved materials and protection systems. 

Although a considerable amount o f  research has been devoted t o  the 
problems of environmentally assisted cracking i n  pipeline steels ,  most 
of this  effort ,  however, has been directed t o  the study of stress cor- 
rosion cracking (or cracking under s t a t i c  load ing )  and of  corrosion per se. 
For a range o f  reasons , quantitative understanding of the phenomenological 
and mechanistic aspects of environmentally assisted cracking i s  yet t o  be 
ful  l y  devel oped. Research du r ing  recent years , a t  Lehi gh University and 
elsewhere, has shown t h a t  environmentally assisted cracking results from 

Quan t i-  
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the interaction of clean metal surfaces (produced by cracking o r  by de- 
formation) with the environment, and t h a t  the very early stages ( i . e . ,  the 
f i r s t  few milliseconds t o  few seconds) o f  reactions are responsible for 
the enhanced cracking. 
variety of sources) , being a proficient mechanical process for creating 
new surfaces, acting i n  concert with corrosion, therefore, may be a more 
serious failure mechanism t h a n  stress corrosion cracking. 

The need t o  consider corrosion fatigue as a potentially significant 
failure mechanism i n  pipelines i s  based on the recognition t h a t  the 
operating pressure (or stresses) do not remain t r u l y  constant  and minor 
fluctuations i n  stresses can significantly a1 ter cracking response [1-41. 
Indeed, i t  has been diff icult  t o  reconcile service failures and labora-  
tory stress corrosion cracking da ta  w i t h o u t  a1 lowing f o r  the possi b i  1 i t y  
for corrosion fatigue [4,5]. 
fatigue, i t  i s  essential t o  recognize the multi-faceted nature of  the 
phenomenon which reflects the synergism of chemistrylelectrochemistry, 
mechanics and metallurgy. 
and the kinetics of chemical reactions between the environment and  the 
fresh crack surfaces, and the interactions of hydrogen t h a t  i s  produced 
by these reactions with the microstructure [SI. 
understanding and i n  placing corrosion fatigue analysis on a fundamentally 
sound and quantitative basis depends on the understanding of the mechanisms 
for and various processes t h a t  control corrosion fatigue. 

Fa t i gue  (associated w i t h  cyclic loading from a 

To properly address the problems o f  corrosion 

The cracking response reflects b o t h  the nature 

Significant advances in 

2 .  PROGRAM OBJECTIVE AND SCOPE 

In this par t  o f  the program, a multi-disciplinary research i s  being 
undertaken t o  investigate the mechanisms o f  corrosion fatigue crack 
init iat ion and propagation i n  pipeline steels exposed t o  aqueous environ- 
ments. 
understanding o f  the ear ly  stage of chemical reactions i n  relation t o  the 
crack init iat ion and propaga t ion ,  ( 2 )  elucidating the mechanisms for 
corrosion fatigue crack initiation and propagation, including the 
influences of chemical , mechanical and metallurgical variables, and 

The program i s  directed a t  (1 )  the development o f  quantitative 
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( 3 )  the formulation and evaluation of models for predicting cracking 
response and service performance. 
face chemistry and material science approach is  used. 

A combined fracture mechanics, sur- 

The specific areas of research are as follows: 
( 1 )  

reactions) as  functions of temperature, pH, ion  concentration , and other 
factors. 

(2 )  Determination of the kinetics of fatigue crack init iation as a 
function of temperature for selected environmental conditions , and cor- 
relation w i t h  the chemical d a t a .  

a function of temperature for  selected envi ronmental conditions , and 
correlation w i t h  the chemical data. 

Examination of the influences of loading variables (such as 
cyclic load frequency, waveform, and load rat io)  on corrosion fatigue 
crack i n i t i a t i o n  and propagation. 

Synthesis of chemical , mechanical and metallurgical data t o  
develop quantitative understanding of  the mechanisms for corrosion fatigue 
crack init iation and propagation. Formulation and verification o f  models 
f o r  predicting cracking response and service performance. 

The research program is planned for a period o f  three ( 3 )  years, and 
complements an ongoing study on the mechanisms f o r  corrosion fatigue i n  
high-strength steels and t i tanium alloys sponsored by the Office of Naval 
Research. Principal efforts dur ing  the f i r s t  year are being directed to-  
wards the measurements o f  the kinetics of passivation and of the kinetics 
of fatigue crack growth i n  one electrolyte over a range of temperatures 
from 70°C t o  90°C. Cyclic load frequencies from lo-' t o  10 Hr. will be 
used for the fatigue crack growth experiments. 
form) and IN Na2C03 - 1 N  NaHC03 solution are used i n  these in i t ia l  studies. 
Other environments w i  11 be considered for la te r  studies, 

Determination of the kinetics o f  passivation ( v i z . ,  i n i t i a l  

(3)  Determination of the kinetics of  fatigue crack propasation as 

(4) 

( 5 )  

X-70 steel ( i n  plate 

3. PROGRESS TO DATE 

Because of the relatively la te  starting date o f  this program w i t h  
respect t o  Lehigh's academic calendar, a suitable graduate student was 
assigned a t  the beginning o f  the spring semester (that i s ,  i n  January, 
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1983). 
development of electrochemical measurement techniques for determining the 
kinetics of passivation o r  surface reaction of clean surfaces. 
of the kinetics of corrosion fatigue crack growth i n  the X-70 steel have 
been init iated also. The results are sumnarized briefly here. 

Principal effort  has been directed towards the exploration and 

Studies 

3.1 Electrochemical Measurement Techniques 

Two electrochemical measurement techniques are being considered. 
The f i r s t  one (the potential step technique) involves cathodically 
polarizing a "clean" surface a t  a suitable potential in the electrolyte 
of interest ,  suddenly switching t o  another potential, and  moni tor ing  the 
current transient under potentiostatic conditions a t  the new potential. 
The second technique, proposed by Gunchoo S h i m  as  a part o f  an  ONR 
sponsored program, measures the galvanic current between a cathodically 
"cleaned" surface and a surface t h a t  has been "oxidized" i n  the electrolyte 
The current f low in each of these cases i s  expected t o  contain information 
on the reactions o f  a clean surface w i t h  the electrolyte. 

the crack t i p ,  under open circuit  conditions, further evaluation of this 
technique i s  being made (in pa r t  by Professor Wei i n  conjunction with 
his sabbatical leave a t  EXXON Corporate Research Laboratories during the 
1982-83 academic year). The essential elements of this  technique are 
i l lustrated in Fig. 1 .  Figure la  i l lustrates  the cleaning arrangement, 
and Fig. I b ,  the measurement configuration. Evaluation o f  the technique 
was carried o u t  using a borate solution, containing an equivolume mixture 
of 0.15N Na2B4O7*10H20 and 0.15N H3B03 solutions, w i t h  pH = 8.8 a t  room 
temperature. 

An idealized galvanic current transient i s  i l lustrated i n  F ig .  2 .  
The in i t ia l  r a p i d  decay represents dissipation of charges i n  the Helmholtz 
(o r  double) layer formed d u r i n g  cathodic cleaning. The slower decay 
represents charge transfer associated w i t h  the surface reactions. A 
simple, linear relationship i n  log (current) versus time coordinates 
would suggest a simple f i r s t  order reaction of the Langmuir type, A 
typical current transient for iron i n  a deaerated buffered borate 

Since the second technique more closely simulates the reactions a t  
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solution (pH = 8.8) a t  room temperature i s  shown in Fig .  3. 
increases in t e s t  temperature, the current decay becomes more rapid and 
i s  consistent with the expected increase i n  the rates of  reactions. 
I t  i s  clear, however, t h a t  the processes are much more complex. 

galvanic current transient, experiments were carried o u t  using only 
graphite electrodes, 
rapidly, Fig:4. This rapid decay i s  consistent with the expected r a p i d  
i n i t i a l  d i s s i p a t i o n  of the double layer. W i t h  the presence o f  dissolved 
oxygen, dissipation of the double layer i s  followed by a much slower 
current decay, F i g .  5. T h i s  slower decay i s  believed t o  result from the 
reduction o f  oxygen i n  solution. Other processes, such as  the oxidation 

2+ o f  i r o n  from Fe 
flow. 

Wi th  

To better understand the processes t h a t  m i g h t  contribute t o  the 

In a well-deaerated solution, the current decays 

t o  Fe3+, are also expected t o  contribute t o  the current 

Nevertheless, the results are very encouraging. Additional experi - 
rnents using gold electrodes in 3% NaCl solution have been carried o u t  
t o  attempt t o  identify the various reactions. Analysis o f  these data 
are i n  progress. 
1N Na2C03 - IN NaHC03 solution will be made t o  correlate the kinetics 
o f  these reactions t o  corrosion fatigue crack growth response. 

Measurements of the reactions o f  X-70 steel w i t h  

3.2 Fatigue Crack Growth 

Fatigue crack growth experiments have been carried ou t  on X-70 
steel in dis t i l led water, under constant-K conditions a t  four temperatures 
from about 20°C t o  90°C ( F i g .  6 ) .  
o f  t e s t  frequency and temperature on the rate of corrosion fatigue 
crack growth. The observed response is  similar t o  t h a t  o f  HY130 steel 
in dis t i l led water [6]. A stronger temperature dependence for the 
mechanical component of fatigue crack growth, however, i s  suggested by 
these data. 
1N Na2C03 - 1N NaHC03 solution, are shown i n  Fig. 7. 
no effect o f  frequency over the range 0.03 to  10 Hz i n  th is  environment. 
Additional tes t s  a t  higher temperatures are in progress. 

The results clearly show the influence 

Room temperature fatigue crack growth da ta ,  obtained in 
The result  indicates 

The results 
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will be correlated w i t h  the planned electrochemical measurements t o  
develop an understanding of corrosion fatigue crack growth response in 
this  steel .  

4. PLANNED RESEARCH 

Further development and evaluation o f  the electrochemical measurement 
techniques and measurements o f  the kinetics of reactions of X70 steel 
w i t h  1N Na2C03 - 1N NaHC03 and 3.5% NaCl solutions will be made d u r i n g  
the coming year. Corrosion fatigue crack growth experiments will be 
continued t o  assess the influences o f  frequency and temperature in the 
same solutions. 
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Fig. 1: Schematic illustration of technique for measuring 
galvanic current transient between "clean" and 
"oxidized" metal surf aces. 
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APPENDIX A 

THE CRACK- INCLUSION I NTERACTION PROBLEM 

1 .  Introduction 

In studying the fracture of multi-phase materials, structures composed 
of  bonded dissimilar solids, and welded joints i t  i s  necessary t o  take i n t o  
account the effect of the imperfections i n  the medium. 
fections are i n  the form of either geometric discontinuities o r  material 
inhomogeneities. For example, in welded joints various shapes of  vo ids ,  
cracks, notches a n d  regions of lack of fusion may be mentioned as examples 
for the former and variety of inclusions for the la t te r .  From the viewpoint 
of fracture mechanics two important classes o f  imperfections are the planar 
flaws which may be idealized as cracks and  relatively thin inhomogeneities 
which may be idealized as f l a t  inclusions with "sharp" boundaries. In bo th  
cases the edges of the defects are lines of stress singularity and ,  conse- 
quently, regions of potential crack initiation and propagat ion .  

The technical l i terature on cracks, voids and inclusions which exist 
i n  the material separately i s  quite extensive. However, the problems con- 
cerning the interaction of cracks, voids and inclusions do not  seem t o  be 
as widely studied (see, for example, [ l ]  for the results of crack-circular 
inclusion o r  void interaction problem and for some references). 
paper the relatively simple problem of an e las t ic  plane containing a crack 
and an arbitrari ly oriented f l a t  e las t ic  inclusion i s  considered. 
interest i s  the examination of the asymptotic stress f ield i n  the neighborhood 
of inclusion ends and the problems of intersecting cracks and inclusions. 
The basic dislocation and  concentrated force solutions are used t o  formulate 
the problem [2]. 
lems involving multiple cracks and inclusions. 

Generally such imper- 

In this 

Of special 

Hence, the formulation can easily be extended t o  study prob-  

2.  Integral Equations of the Problem 

The geometry of the crack-inclusion interaction problem under considera- 
I t  i s  assumed t h a t  the medium i s  under a s tate o f  tion i s  shown i n  Figure 1. 

plane strain o r  generalized plane stress and the in-plane dimensions of the 
medium are large compared t o  the lengths of a n d  the distance between the 
crack and the inclusion so t h a t  the effect of the remote boundaries on the 
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perturbed stress s ta te  my be neglected. Thus, the Green's functions fo r  
the concentrated forces and dislocations i n  an infinite plane may be used t o  
formulate the problem. 
ciently " t h i n "  so t h a t  i t s  bending stiffness may also be neglected. 

Referring t o  Figure 1 we consider the stresses and displacements, due t o  
a p a i r  of edge dislocations on the x a x i s ,  a p a i r  of concentrated forces on 
the l ine e=constant and the applied loads acting on the medium away from the 
crack-inclusion region. Let the subscripts d ,  p and  a designate these three 
stress and  deformation states,  i . e . ,  l e t  5 d i j y  CI 
o r  ( i , j )  = ( r ,e ) ,  be the stress components due t o  dislocations, concentrated 
forces, and applied loads, respectively. The total stress s ta te  i n  the elas- 
t i c  plane may, therefore, be expressed as 

I t  i s  further assumed t h a t  the inclusion i s  suffi-  

and aa i j ,  ( i , j )  = (x,y) pi j 

Let us now assume t h a t  the dislocations are distributed along a<x<b,  
y=O forming a crack. 
defined by 

If g ( x )  and h ( x )  refer t o  the dislocation densities 

the corresponding stress components a t  a point (x ,y)  in the plane may be 
expressed as 

b 

0 dxx ( X , Y >  = I CGxx(x,y, t )g(t)  + H X X ( X , Y , t ) h ( t ) l d t  3 

a 
b 

(3a-c) 

where 

-2- 



211 . 
Gxx = ‘q&i-T 

Hxx = * ’ (4a- f )  
Y 

9 

m-  

I n  ( 4 )  u and K a re  t h e  e l a s t i c  constants o f  t he  medium, 1.1 t he  shear modulus, 
K = 3-4v f o r  plane s t r a i n  and K = ( 3 - ~ ) / ( l + v )  f o r  plane s t ress  I, being t he  
Poisson’ s r a t i  0. 

i n  [2] t he  s t ress  components u 
a c t i n g  a t  t he  p o i n t  (xo, yo ) may be w r i t t e n  as 

S i m i l a r l y ,  from the  concentrated f o r ce  s o l u t i o n  as given, f o r  example, 

Y 
= Sij due t o  a p a i r  o f  forces Px and P 

p i j  

1 (A,+A*Px + (B.[+B2Py 
sxx~x’YYxoYYo) = 2- L(X-Xo)L + ( Y - Y o ) T  , 

(sa-c) 
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(6a-f)  

I f  the inclusion i s  located along the line c < r < d ,  e = constant ,  and 
i f  i t s  bending stiffness i s  neglected, then the following conditions are 
valid: 

Thus, t o  formulate the problem i t  i s  sufficient t o  consider only the radial 
component Pr=p o f  the concentrated force. For Pe=O and Pr=p observing t h a t  

P, = p cose , Py = p sine , 

and substituting xo = rocose, y, = rosine, by using the kernels S i j  given 
by (5) the stress components CT are found t o  be pi j 
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where the functions A i l y  B i t ,  ( i= ly2 ,3)  are obtained f r o m  ( 6 )  by substituting 
= rocose and yo = r sine, e.g., 

xO 0 

A, I (x ,y , ro)  = -2(x-rocos~)[(x-rocose)2 + (y- r 0 sine)2] . (10) 

Since the stresses oaij  due t o  the applied loads are known ,  from ( l ) ,  
( 3 )  and ( 9 )  i t  i s  seen that once the functions g ( x ) ,  h ( x )  and p ( r )  are deter- 
mined the problem i s  solved. These unknown functions may be determined by 
expressing the stress boundary conditions on the crack surfaces and the 
displacement compatibility condition along the inclusion, namely 

(x,O) + u (x,O) + G (x,O) = 0 ( a < x < b ) ,  
QYY PYY aYY oyy(x.o) = 

where E i ( r )  i s  the (longitudinal) strain in the inclusion. 
the stress s ta te  away from the crack inclusion region i s  given by oYj , 
( i  , j )  = (x,y) then the applied quantities i n  (11)  may be expressed as 

I f ,  f o r  example, 

m W 

( X Y O )  = ff Y 
XY 

W 3- K cos2e) + 4 -  oxy sin201 . + 5 (sin2e - E 
YY (1 2a-c) 

We now note that i f  p ( r )  i s  the body force acting on the elast ic  medium 
then -p(r) would be the force acting on the inclusion distributed along i t s  
length. Thus ,  the strain i n  the inclusion may be obtained as 
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where vs and K~ are the e las t ic  constants, and As i s  the cross-sectional 
area of  the inclusion corresponding t o  u n i t  thickness o f  the medium i n  z- 
direction. From the expression o f  given by the Hooke’s l a w  

from (9 )  and the corresponding s tress  transformation i t  can be shown that 

Similarly, from ( 3 ) ,  ( 4 )  and (14) we f i n d  

where 

x[(t-rcose)2-r2~in2e] + (sinze- 1 + ~  3-K cos2e) x 

x(  t-rcose) [3r2sin2e + (t-rcose)2] 

t - sin2e r sine[r2sin2e-(t-rcose)2]~ , 4 
1 +IC 

HE(r,t) = mr 211 1 C(cOS2e- 1 + ~  3- K s i n 2 e )  r s i  n e  [rzs i n2e 

+ 3(t-rcose)21 + (sin2e- 2 cos2e)r s ine x 

x [ r 2 s i n 2 e - ( t - r 2 ~ 0 ~ 2 e ) 2 ]  + E 4 s i n 2 e  x 

x(t-rcose)[(t-rcose)2 - r2sin2e] , 

~2 = (t-r cose)2 + r2sin2e . 

( 7 7 )  
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Finally, by s u b s t i t u t i n g  from (3), (4) ,  ( 9 ) ,  (12) ,  (13), (15) and 
(16) i n t o  ( l l ) ¶  t h e  i n t e g r a l  equations of the problem may be obtained a s  
follows : 

(Al1-A2')cose+(B1'-B2')sine - 1+K 
P(ro)dro - - - U 

IT t - x  x-ro cos e ) 2 +( rosin e)2 12 2?J YY 
C a 

( a < x < b )  

(A3'cose+B3'sine)p(r0) - 1+K 0 ,  a dr, - - - 
IT t- x 4ITW x- rOcos e ) 2+( ros i ne) 2 1  2 211 XY 

C 

1. jb h ( t ) d t  , 1 

a 

cO b d P(ro)  
b 

cg 1 G ( r , t ) g ( t ) d t  + - H E ( r y t ) h ( t ) d t  + 1 r0-r d r o  
IT E IT IT 

a a C 

d 
+ yco I H(ro-r)p(ro)dro = - - cO [(cos2+ 1+~. 3- K s i  n2e)uxx OD 

IT IT 
C 

3 - K  m 4 -  + (s in%- 1+~. cos2e)oyy + - 1+K u xy s inZe] ,  (c<r<d)  , 

where 

From the d e f i n i t i o n  o f  g and h given by (2 )  i t  follows t h a t  
b b 

g ( t ) d t  = 0 , / h ( t ) d t  = 0 . 
a a 

Also, the s t a t i c  equi l ibr ium o f  the inclus ion requires  t h a t  
d 

20a-c 

Y 

p ( r ) d r  = 0 . 
C 
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Thus, the system of singular integral equations must be solved under the 
conditions (22 )  and (23). From the function-theoretic examination o f  the 
integral equations (20) i t  can be shown t h a t  the unknown functions g ,  h and 
p are o f  the following form [2]: 

(24a-c) 

where F1, F2 and F3 are bounded functions. 
(22 )  and (23 )  may easily be obtained by using the numerical method described 
i n  [3]. 

The solution o f  (20) subject t o  

3.  Stress Singularities 

After solving (20)  the Modes I and I1  stress intensity factors kl  and 
k3 a t  the crack t ips x=a and x=b, y=O which are defined by 

k l ( a )  = lim ~ ~ O ~ ~ ( X , O )  , 
X-ta  

k 2 ( a )  = lim ~ ~ o ~ ~ ( x , O )  
X-ta  

may be obtained as follows: 

k l ( a )  = lim a m '  g(x )  , 
l+K X-ta 

k2(a) = lirn 4- h ( x )  , 
l + K  x* 

The constants k, and k 2  are related 

k l ( b )  = lim ~ ~ o y y ( x Y O )  , 
X-tb  

k 2 ( b )  = lim ~ ? C J ~ ~ ( X ~ O )  , 
X-tb 

(25a-d) 

k l ( b )  = - lirn dT@TJ- g ( x )  , 
l+K x& 

k 2 ( b )  = - 211 lim fim h(x) . 
l + K  XA 

( 26a -d) 

t o  the asymptotic stress fields near 
the crack tips t h r o u g h  the well-known expressions (see, for example, [4] 
and [SJ ) .  
s tress fields near the inclusions having sharp edges. 
i t  i s  seen that the shear stress are has a square-root singularity a t  the 

However, not  so well-known i s  the asymptotic behavior o f  the 
From (24c) and ( 7 d )  
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t ip  of  the inclusion. However, i f  one i s  interested in crack init iation 
around such singular points, one needs t o  know the direction and the magni- 
tude o f  the maximum local cleavage s t ress ,  T h i s ,  i n  t u r n ,  requires the 
investigation of the complete asymptotic stress field near the singular 
points. By u s i n g  the basic form o f  the solution of the related density 
functions given by (24)  and going back t o  the original s t ress  expressions, 
the asymptotic stress fields may be developed by following the general 
techniques described i n ,  f o r  example, [6] o r  [7]. 

s train o r  generalized plane stress conditions, the asymptotic analysis gives 
In an e las t ic  medium containing an e last ic  line inclusion under plane 

the near t i p  stress field as follows [7] (*I .  . 

e cos F 9 
- kl u ( r ,e)  = - 

YY fi 

e cos 2 , " 3+K kl u X x ( r , e )  = - - - 

sin , u X y ( r , e )  = - - - e " K + 1  kl  (27a-c) 

where x,y and rye  are the standard rectangular and polar coordinates, the 
origin of coordinate axes i s  a t  the inclusion t i p  and the inclusion l ies  
along the negative x ax i s  o r  along e=n, r>O. Equations (27 )  suggest t h a t  
similar t o  crack problems one may define a (Mode I )  "stress intensity factor" 
in terms of the ( tensi le)  cleavage stress as follows: 

kl = lim f i o y y ( r , O )  . 
r 4  

From ( 7 )  by observing t h a t  ( a t  the r i g h t  end o f  the inclusion) 

u ( r , + n )  - u ( r , - n )  = -p(r) , 
XY XY 

* 
Note the misprints i n  (4 .6)  of r7]. 
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i n  terms of the function p(x)  kl  may be expressed as 

1 K - 1  k l  = -1im -- fi p ( r )  , 2 K+1 r-4 

I t  should be noted t h a t  i n  the case o f  flexible elast ic  l ine inclusions 
there i s  no antisymmetric singular stress field.  For example, in a plane 
under pure shear (CT- ) parallel t o  the inclusion, the perturbed stress field 
i s  zero. Physically th is  of course follows from the fact t h a t  the normal 
strain (cXX) parallel t o  the plane o f  shear i s  zero. 

Similarly, for a r i g i d  line inclusion ( i , e . ,  for an inclusion having 
inf ini te  bending as well as tensile st iffness) i t  can be shown that for  
small values of r the asymptotic stress field i s  given by 

XY 

- 1  8 K + l  8 u (r,e) = - ( k l  cos - +  - k 2  sin F)  , 2 K - 1  YY fi 

- 1  3 + K  8 3 - K  e k, COS - +  - k2 sin 2) , CT ( r ,e )  = - - - xx E ( K-1  2 K-1 
(31 a-c) 

e e k sin + k cos 2) . - 1  
XY fi (77 1 2 CT (r,e) = - 

Again, the stress intensity factors kl  and k2 are defined i n  terms of the 
tensile and shear cleavage stresses a t  e=O plane as follows: 

k, = lim fi oyy(r,O) , k p  = I im fi a,(r,O) . 
r 4  r 4  

As i n  the crack problems, the antiplane shear component o f  the asymp- 
to t ic  stress f ie ld around f l a t  e last ic  and r i g i d  inclusions i s  uncoupled. 
D e f i n i n g  a Mode 111 stress intensity factor by 

k3 = lim f i ~ ~ ~ ~ ( r , O )  , 
r 4  

(33)  

the asymptotic stress f ie ld may be expressed as  

-10- 



8 cos , -. k3 

- k 3  oy,(r,e) = - 

u (rye) = - 
fi xz 

e sin 7 , 
fi 

(*I where again the inclusion l ies  along 8 = ~  plane . 

4. Crack-Incl usion Intersection 

Analytically as well as  from a practical viewpoint intersection of 
cracks and inclusions presents some interesting problems. 
the p o i n t  of intersection i s  a p o i n t  of irregular singularity w i t h  a power 
other t h a n  1/2 .  Even though  the general intersection problems for an a r b i -  
t r a ry  value o f  e may be treated i n  a relatively straightforward manner, in 
this paper only some special cases will be considered. 

In these problems 

4.1 The  case of  

In this case the 

b 
1 - ' 1  mdt+; t -x 

71 
0 

b 

e = , a = 0, c = 0 

system o f  singular integral equations (20) becomes 

0 0 

(*)Note t h a t  i n  th is  case i f  the remote stress i s  decomposed i n t o  ugz and 
0 the perturbed stress f ield due t o  0- would be zero, For the cleavage 

Y Z '  YZ 
plane 8 the shear cleavage stress may be written as o 
- (k3 /msin(e /2) ,  eo = e+1~/2, indicating t h a t  e=%r/2 i s  the maximum cleavage 
planes . 

OD 

YzCose= (r,e)=oxZsine-a 
80 
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0 0 

d d 
+ 1 p(t> d t  + 5 1 H ( t - r ) p ( t ) d t  = f3(r)  , (O<r<d) ,  

IT t - r  IT 
0 0 

where 

35a-c 

and f l y  f 2  and f3  are known i n p u t  functions (see, for example, the r i g h t  
hand side of ( 2 0 ) ) .  
has kernels which become unbounded as the variables ( t ,x , r )  approach the 
point of irregular singularity (x=O=t=r) .  
t i  ons by 

Note t h a t  aside from the simple Cauchy kernels, (35) 

T h u s ,  defining the unknown func- 

F1 ( t )  F 2 ( t )  F3(t) 

t“( b-t)’ l  t“( b - t ) ”  t”( c- t )  6 3  ’ g ( t )  = - , h ( t )  = Y P ( t >  = 

and by us ing  the function-theoretic technique described i n  [3], the charac- 
t e r i s t i c  equations for p l y  B ~ ,  63 and a may be obtained as follows: 

bl C O S ~ I T R C ~  - ( b 2 + 8 a - b 3 ~ 2 ) ~ ~ S 2  7 
O Y  

-( b4-b5a+b3a2)s i n2  7 ITa - - (39) 

where 
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b l  = 8 ~ / ( 1 + ~ )  3 b2 = 2(3+K)(K-l)/(K+l) , 

plane s t r a i n  

= 8 / ( ~ + 1 )  , b4 = 2 ( 3 - ~ )  b5 = 1 6 / ( 1 + ~ )  . b3 

plane stress 

Note t h a t  the proper t i es  o f  the inclus ion ( a s  expressed by the constant  c5 
i n  ( 36 ) )  enter the in tegra l  equations (35) only t h r o u g h  a Fredholm kernel 
and, the re fore ,  have no influence on the s ingu l a r  behavior of the so lu t i on ,  
and C( i s  dependent on K o r  on the Poisson's  r a t i o  of  the medium only. From 
(38) i t  i s  seen t h a t  the acceptable  roots  a r e  Bk = 0.5, (k = 1 ,2 ,3 ) .  
numerical examination of  (39) i nd i ca t e s  t h a t  i n  this spec ia l  case o f  e = 

we have 0 .5<~ l< l ,  meaning t h a t  the stress state a t  r=O=x has a s t ronger  s i ngu-  
l a r i t y  than the conventional crack t i p  s i n g u l a r i t y  of  l / f i .  
due t o  the f a c t  t h a t  in  this problem two s ingu l a r  stress f ields a r e  combined 
a t  r=O. Also, i t  turns ou t  t h a t  for O < W ~  - the c h a r a c t e r i s t i c  equation (39) 
has two roo ts  i n  O<Re(a)<l and both a r e  r e a l ,  These roots  a r e  given i n  
Table 1 f o r  various values o f  the Poisson 's  r a t i o .  

The 

T h i s  may be 

Table 1 .  Powers of stress s i n g u l a r i t y  ~1 f o r  a crack and 
an inclus ion:  a = 0, c = 0, e = ~ / 2  ( F i g .  1 ) .  

V 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 

~~ - 

a1 
0.63 627093 
0.64489401 
0.65405762 
0.66352760 
0.67270080 
0.67996342 

9 
0 

0.09571474 
0.14825371 
0.18953334 
0.22567265 
0.26027940 

C1l 
0.63627093 
0.64408581 
0.65095281 
0.65695651 
0.6621 7253 
0.66666667 

0 
0.08990596 
0.1 3249000 
0.161 76440 
0.18404447 
0.20196313 

The stress i n t e n s i t y  f ac to r s  a t  the crack t i p  x=b, y=O and a t  the end 
o f  the inc lus ion  x=O, y=d may be obtained by using the r e l a t i o n s  (26)  and 

(30 ) .  
f a c to r s  a r e  def ined;  

A t  the s ingu l a r  point  x=O, y=O the following useful stress i n t e n s i t y  
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k l ( 0 )  = lim fi xu oyy(-0,O) 
x-ro 

k2(0) = lirn xCL uw(-0,O) , 
x+-0 

for the crack, and 

kl(0) = lim Ey" p(O,+O) 2 
Y++O 

for the i ncl usi on. 

4.2 The Special Case o f  8 = 5 ,  c = -d, a = 0. 

In this  case the problem i s  further simplified by assuming "symmetric" 
W external loads (for  example, ts =O in (20)) .  

i s  a plane of  symmetry, h ( x )  = 0 ,  and (20) would reduce t o  
Thus ,  the plane of  the crack 

XY 

0 0 

given i n  (20) ( w i t h  uw 

By defining 
XY 

where, again the i n p u t  functions f, a n d  f3  are known and,  for example, are 
= 0 )  and the constants c1 ,. . . ,c5 are defined by (36). 

from (43) i t  may be shown that 

C o t B k  = 0 3 ( k = l , 2 )  Y 

-74- 



From (45) i t  i s  seen t h a t  Bk = 0.5. 
i t  has only one r o o t  f o r  w h i c h  O<Re(a)<l 
t o  be rea l  and highly dependent on the Poisson's  r a t i o  ( see  Table 2 ) .  
c h a r a c t e r i s t i c  equation (46) and the r o o t s  given i n  Table 2 a r e  iden t i ca l  
t o  those  found i n  [SI where an in f in i t e ly  long s t r i n g e r  i n  cracked p l a t e  
was consi dered. 

A c ose examination o f  (46) shows t h a t  
Furthermore, this root  turns ou t  

The 

Table 2. Power of stress s i n g u l a r i t y  a a t  the crack- inclusion 
i n t e r s e c t i o n  for e=&?,  c=-d, a=O and f o r  symmetric 
loading. 

V 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

CL 

plane s t r a i n  

0 
0,10964561 
0.174321 37 
0.22678790 
0.27392547 
0.31 955800 

plane stress 

0 
0.10263043 
0.15468088 
0,191 32495 
0.21 9722 74 
0.24288552 

In t h i s  problem, too,  the stress i n t e n s i t y  f a c t o r s  f o r  the 
the inclus ion may be defined a s  i n  (41) and (42). 

4 .3  The Special  Case o f  e=T,  a=O, c=O 

In this case the crack and the inclus ion a r e  on the x a x i s  

crack and 

and occupy 
(y=O, O<x<b) and (y=O, -d<x<O) , respect ive ly .  
again t o  the symmetric loading f o r  w h i c h  h(x)  = 0 and observing t h a t  f o r  
the va r i ab les  along the inclus ion r ' =  -x, ro = -t, p(ro)  = -px( t ) ,  the 
i n t e g r a l  equations o f  the problem may be expressed as 

Res t r i c t ing  our a t t e n t i o n  
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0 -d 

X 1 p x ( t ) d t  = f 3 ( x ) ,  (-d<x<O) (47a ,b)  

b 

0 -d -d 

where the constants c 3  and c5 are defined by (36) and the known functions 
f l  and f g  are given by the r i g h t  hand sides of (20a) and (20c) ( w i t h  flrn =O).  

I f  we now l e t  
XY 

from (47) the characteristic equations for  a ,  B~ and fi2 may be obtained as 
fol 1 ows : 

IC-1 cos2lTrcr = - (-) 
2G 

Equation (49) aga in  gives B~ = B, = 0.5. From (50) i t  may easily be seen 
t h a t  ~1 i s  complex and i t s  value for which O<Re(a)<l i s  found t o  be 

T h i s  value of ~1 turns out t o  be identical t o  the power of singularity for a 
perfectly rough r i g i d  stamp w i t h  a sharp corner pressed against an e last ic  
half plane having K as an e last ic  constant [2] (e.g., IC = 3-4v f o r  the plane 
strain case). 
upon closer examination of  the problem f i r s t ,  from (47b) i t  may be seen 
t h a t  the elast ic i ty  o f  the inclusion ( i . e .7  the term containing the constant 
c5) has no effect on the nature of the stress singularity. T h u s ,  i f  one 
assumes the inclusion t o  be inextensible, for  the symmetric problem under 
consideration i t  can be shown t h a t  the conditions in the neighborhood of the 

A t  f i r s t  this  result may be somewhat unexpected. However, 
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crack t ip  x=O, y=O, f o r  example, for  y<O, are identical t o  the conditions 
a round  the corner of the stamp i n  the e las t ic  half  plane occupying y<O. 
I t ,  therefore, appears t h a t  for the e las t ic  inclusion collinear w i t h  a 
crack, the stress s ta te  around the common end p o i n t  would have the standard 
complex singularity found i n  the r i g i d  stamp problem. 

5. The Results 

The crack-incl usion problem described i n  previous sections i s  solved 
for  a uniform stress s ta te  oyj, ( i , j=x,y) ,  away from the crack-inclusion 
region. 
ponent (oxx o r  CT 

more general loading may then be obtained by superposition. Even t h o u g h  
the stress s ta te  everywhere i n  the plane can be calculated af ter  solving the 
integral equations (e.g. , (20))  and determining the density functions g ,  
h ,  and p ,  only the stress intensity factors are given in this section. 
nonintersecting cracks and inclusions the stress intensity factors defined 
by (26) and (28) are normalized as follows: 

For simplicity the results are obtained by assuming one stress com- 
W W o r  ow ) t o  be nonzero a t  a time. The solution for a 

YY XY 

For 

for the crack and 

for the inclusion. 

e on the stress intensity factors i s  shown in Table 3. These results are 
given for two values of the stiffness parameter y defined by ( 2 1 ) ,  namely 
y=O (the inextensible inclusion) and y=10. 

Referring t o  Figure 7 ,  for c=a, d=b, and (b/a)=5 the effect of the angle 
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Table 3. Normalized stress i n t e n s i t y  f ac to r s  i n  a plane containing a 
crack and an inclus ion subjected t o  a uniform stress s t a t e  "yj 
away from the crack- inclusion region (c=a,d=bya=b/5,Fig. 1 ) .  

- .0034 - .0034 

k '  

.0008 

8 

1" 30 O 60" 90" 120" 150" 180" 

.8905 
-.2152 
7.0221 

.4327 

.9570 

.8012 

.9691 
- .0517 

.9862 

.0742 

.2619 
- .0269 

.1237 

.2355 
- .0806 
- .5321 

-1 .lo68 
-1 .4785 

.0385 

.0587 
- .0252 
-.1128 
- .3440 
- .3885 

1.0083 
- .0098 

.9967 
-. 0065 
-. 3273 

.1552 

.9999 
- .0047 

.9997 
-. 0020 
-.1277 

.loo1 
( b )  

.0704 

.0122 
- .0365 
-.0140 
- .6949 
-. 6941 

.0106 
,0004 

- .0068 
-. 0030 
-.2152 
-.2154 

1.0298 
- .0661 

.9570 
- . 0002 

-1.1324 
-, 6989 
1.0016 
- .0136 

.9919 

.OOOl 
-. 3979 
-.1848 

1.0049 
- .0830 

.9617 

.0007 
-1.3970 
-1.1134 

.9988 
-.0153 

,9928 
.0005 

- .4735 
-. 3269 

m 

.9912 
-. 0367 

.9857 
- .OOOl 
-. 8879 
- .7336 

.9978 
- .0066 

.9973 

.0002 

- .2989 
-.2177 

1.0001 
.0004 

1.0001 
. 000 1 

-.0310 
..0428 

1 .oooo 
.OOOl 

1 .oooo 
. 0000 

- .0220 

,0171 

.0052 

.0036 

. 0001 

.0766 

.0772 
-. 0005 

.0010 

.0007 

.oooo 

.0239 

.0239 

.0310 

.0142 

.OOOl 

.4620 

.4644 
-. 0001 

.0056 

.0026 

.oooo 

.1432 

.1434 

.0036 
,001 4 
.oooo 
,0774 
.0776 
.0002 
.0006 
.0003 
.oooo 
.02 39 
.0239 

-.0117 
-.0161 
-. 0072 
- .0003 
- .6988 
- .6994 
- .0023 

.0029 
-.0013 

.oooo 
-.2151 
-.2151 

1.0076 
.oooo 

1.0033 
.oooo 
.3850 
.4320 

1.0014 
.oooo 

1.0006 
.oooo 
.1106 
.1354 

-. 0203 
. 0000 

- .0086 
.oooo 

-1 .0877 
-. 0884 
- ,0038 
. 0000 

-.0016 
. 0000 

- .3346 
-. 3347 
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Table 3 - cont. 

.0028 

.9950 
-. 0021 

.9995 

.0533 
-. 1076 

.OOl  0 

.9992 
-.0003 

.9998 

.0557 
-. 0342 

0 

1" 30" 60" 90" 120" 150" 180" 

.0134 .0223 
1.0599 1.0304 
0.0231 .07 36 
1.0005 1.0005 
7.3767 1.3606 
1.2735 .3717 

.0032 .0043 
1.0108 1.0054 

,0043 ,0025 
.9999 1.0000 
.4513 -.4316 
.3912 -.4029 

I I ( c )  qy f 0 Y 

.1289 
1.0849 

.1641 
1.4055 

-1 .0246 

,1428 
1.0180 
-. 0754 

.9685 
-1.6348 

I l k t ( d ) /  I 2.0539 1-1.3808 I 

.0858 
1.0527 

,1044 
1.1662 
-.6916 
1.1639 

. 01 98 
,9967' 

.9929 
-.0140 

- .5492 
-.4179 

.0669 

.9054 
-. 0670 

.99 74 
-1.3085 
-1.4661 

. O l  00 

.9826 
-.0121 

.9994 
-. 3731 
-. 4533 

0.0000 
1.0000 
0 .oooo 
1 .oooo 
0.0000 

.oooo 

.oooo 
1 .oooo 

.oooo 
1 .oooo 

.oooo 

.oooo 
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Some sample results for an inclus ion c o l l i n e a r  w i t h  a crack ( i . e ,  
f o r  e=O) are  given i n  Table 4. Note t h a t  f o r  this configuration under the 

k '  W 

i j  U 

k i ( a >  
W k i  ( b )  

k i ( c )  
k i ( d )  

xx U 

k;(a)  
CQ k ; ( b )  

k ; W  0 
YY 

Table 4. Normalized stress i n t e n s i t y  f ac to r s  f o r  an inclus ion 
c o l l i n e a r  w i t h  a crack. Relative dimensions: e=O, 
d-c = b-a, c = b+s. Applied loads: uYj, ( i , j=x ,y ) .  
(Fig.  1 ) .  

s = (b-a)/100 s = (b-a) /2  

y ' 0  y = 70 y = o  y = 10 
-0.0202 -0.0040 -0.001 9 -0.0004 
-0.1338 -0.0300 -0.0027 -0.0005 
-1.0482 -0.3296 -1.0889 -0.3347 
-1.0845 -0 i 3345 -1.0889 -0.3347 

1.0047 1.0006 1.0008 1.0002 
1.0200 0.9987 1.0011 1.0002 

-0.0861 -0.1571 0.4559 0.1397 

W loads shown i n  the t ab l e ,  t h a t  i s ,  for ow and aXX, because o f  symmetry 
the Mode I1 stress i n t e n s i t y  f ac to r s  k2 (a )  and k p ( b )  a r e  zero. 
the shear  loading ow i t  i s  found t h a t  k i ( a )  = 1 ,  k;(b) = 1 and k l ( a )  = 

k l ( b )  = k l ( c )  = k l ( d )  = 0. 
plane under pure shear  om the s t r a i n  component E X X ( x , O )  i s  zero and 

XY 
hence an inex tens ib le  inclusion on the x a x i s  would have no e f f e c t  on the 
stress d i s t r i b u t i o n .  

f o r  which Table 5 shows some sample r e s u l t s .  
f i gu ra t i ons  considered i n  Tables 4 and 5 the e f f e c t  of  the crack- inclusion 
i n t e r ac t i on  on the stress i n t e n s i t y  f ac to r s  does not seem t o  be very s i g -  
n i f i c a n t .  

YY 
Also, for 

XY 
This follows from the f a c t  t h a t  i n  the cracked 

Another spec ia l  configuration is an inclus ion pa ra l l e l  t o  the crack 
In the two spec ia l  con- 

The r e s u l t s  f o r  an e l a s t i c  medium f o r  which xz plane i s  a plane o f  
symmetry w i t h  respect t o  the crack- inclusion geometry as  well as  the 
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Table 5. Norma 

k '  03 

i j  a 

k i  ( a )=k i  ( b )  
W 

k;( a)=-k;( b )  xx 5 

k i ( c ) = k i ( d )  

ized stress i n t e n s i t y  f ac to r s  i n  a plane con ta ln ing  an 
inclus ion p a r a l l e l  and equal i n  length t o  a crack,  both symmetri- 
c a l l y  located w i t h  respect t o  the y ax i s .  The crack i s  along the 
x a x i s  and H is the d i s tance  between the crack and the inclu-  
s ion i n  y d i rec t ion  ( F i g .  1). 

H =  

y = O  

-0.0182 
0.0281 

-1.0834 

b-a 
y = 10 

-0.0070 
-0 * 001 1 
-1 .0887 

H = 10(b-a) 
y = o  y = 10 

-0.0007 -0,0002 
0.0006 0.0000 

-0.0683 -0.0683 

03 

YY 
5 

m 

XY 
5 

I 

k;(a)=k; (b )  1.0063 1.0028 
0.0004 k;(a)=-k;( b )  -0.0060 

k i  ( c )=k i  ( d )  0.3917 0.4387 

k i (  a )= -k i  ( b )  -0.0042 0.0000 
k;( a)=k;( b )  0.9965 1 .oooo 
k i ( c )  -0.11 31 0.0033 
k ; ( d )  0.1 129 -0.0052 

-21 - 

1.0004 
-0.0001 
0.0411 

-0.0002 
0.9998 

-0.0123 
0.0123 

1.0001 
0.0000 
0.0276 

0 .oooo 
1 . 0000 
0.0004 

-0.0006 



applied loads are given in Figures 2-12. . In this  example the crack i s  per- 
pendicular t o  the inclusion and the external load i s  a uniform tension par- 
a l le l  o r  perpendicular t o  the crack and away from the crack-inclusion region 
(see the insert i n  the figures). The results shown i n  the figures are self-  
explanatory. However, the solution also has some unusual features among 
which, for. example, one may mention the tendency o f  the crack t i p  stress 
intensity factors k ' ( a )  and k ' ( b )  t o  "peaking" as y decreases and as d / a  
increases (where 2d and 2a are the lengths o f  the inclusion and the crack, 
respectively and y = 0 corresponds t o  an inextensible inclusion). 

The results for the limiting case of the crack touching the inclusion 
are given i n  Figures 8-12. 
the stress intensity factor k l ( a )  and  the normalized stress intensity fac tor  
k i ( a )  are defined by 

In this case a t  the singular point x=O, y=O 

k l ( a )  = lim xClu (x,O) , (x < 0) , 
X 4 -  YY (54) 

k;(a)  = k ( a ) / u y i a  , ( i = ( x , y ) ;  a=b/2)  (55) 

where the power of singularity ~1 i s  given in Table 2. 
i n  Figures 8-12 are obtained for v = 0.3. 

problem, namely for the problem i n  which y axis i s  the l ine of symmetry 
with regard t o  loading and geometry are given i n  Figures 13-28. 
problem a=-a, b=a,  d x > O  and the external load i s  either om or o i x  (see the 
insert i n  Figure 13 ) .  
intensity factors a t  x=a=-a and kl ( b)=kl  ( a )  , k2 ( b)=-k2(  a ) .  General ly  the 
magnitude of k , (a )  and k2(a) seem t o  increase w i t h  increasing length and 
stiffness o f  the inclusion ( i  .e. , w i t h  increasing (d-c)/2a and decreasing 
y = p ( l + ~ ~ ) / A ~ ~ i ~ ( l + ~ ) ,  where us i s  the shear modulus of the inclusion). 
Also, as expected, kl ( c )  and k l  ( d )  describing the intensity o f  the stress 
f ield a t  inclusion ends tend t o  increase as the stiffness o f  the inclusion 
increases. However, their  dependence on the relative length parameters i s  
somewhat more complicated (see, for example, Figure 16 for change i n  beha- 
v i o r  o f  the var ia t ion  o f  k l ( d )  a t  (d-c)/2a=5).  

The results shown 

The stress intensity factors for the other symmetric crack inclusion 

In this 

YY 
Note that the figures show the crack t i p  stress 

Figures 13-20 show the effect 

-22- 



o f  the inclusion length f o r  constant crack length 22 and constant distance 
c (Figure 13). 
crack lengths i s  shown i n  Figures 13-28. 

t ive location of the inclusion are shown in Table 6. 
i n  these calculations i t  i s  assumed tha t  e = d-c = Za,  c/2a = 0.1 and 
a/2a i s  variable. 

Finally, the stress intensity factors for the crack-inclusion inter- 
section problem considered in Section 4.1 are given in Figures 29-43. 
The normalized stress intensity factors shown i n  these figures are defined 
by (see ( 4 1 ) ,  (52) and ( 5 3 ) )  

The effect of the distance c for constant inclusion and 

The results o f  the nonsymtric  problem showing the effect of  the rela- 
Referring t o  Figure 1 ,  

IT 

I --  - ' 1im a xff cryy(-0,o) , 
k l A  U Y j f i  X-t-0 

In this case t o o ,  generally the magnitude of  the stress intensity factors 
increases w i t h  increasing length and st iffness o f  the inclusion. 
since the crack and the inclusion are located in each other's "shadow", 
the relative dimensions seem t o  have considerable influence on the vari- 
a t i o n  as well as the magnitude of the stress intensity factors. 

However, 
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Table 6 .  The e f f e c t  o f  the r e l a t i v e  loca t ion  o f  inclus ion on the stress 
i n t e n s i t y  f a c t o r s ;  e = ~ / 2 ,  (d-c)/2a = 1,  c/2a = 0 , l  (Figure 1 ) .  

k; ( a )  k p )  k; ( b )  k;(b) 

-0.0202 0.0490 0.0161 0.0003 
-0.1033 0.0425 0.0133 0.0039 

m .  

k; (c) k; (d )  

0.4450 0.4471 
0.4192 0.4402 0.0 

-0.1 
-0.3 
-0.5 

+0.1 
0.0 

-0.1 
-0.3 
-0.5 

0.1 
0.0 

-0.1 
-0.3 
-0.5 

00 

xx 5 

W 

YY 
6 

00 

XY 
0 

-0.0849 
-0.0349 
-0.0363 

1.0458 
1 .2652 

1.1548 
1.0448 
1.0313 

-0.0044 0.0076 0.0081 0.3538 0.4285 
-0.0308 0.0023 0.0060 0.3348 0.4163 
-0.0114 -0.0363 0.0114 0.3195 0.4109 

-0.1396 0.9545 0.0012 -1.5217 -1.0543 
-0.1090 0.9667 -0.0078 -1 -2922 -0.9497 
0.0064 0.9865 -0.0150 -0.5345 -0.8136 
0.0294 1.0013 -0.0102 -0.2308 -0.6378 
0.0129 1.0313 -0.0129 -0.1959 -0.5801 

0.0098 
0.0493 
0.0463 
0.01 23 

0 

0.9905 -0.0033 0.9992 0.1050 -0.1338 
0.9796 -0.0065 0.9983 -0.1734 -0.1675 
1.0019 -0.0041 0.9960 -0.1054 -0.1648 
1 .0066 -0.0007 0.9971 -0.0236 -0.0977 

1 0 1 0 0 
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